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We obtain the complete phase diagram of the hard-core Bose-Hubbard model in the presence of a period-two
superlattice in two and three dimensions. First we acquire the phase boundaries between the superfluid phase
and the “trivial” insulating phases of the model �the completely-empty and completely-filled lattices� analyti-
cally. Next, the boundary between the superfluid phase and the half-filled Mott-insulating phase is obtained
numerically, using the stochastic series expansion algorithm followed by finite-size scaling. We also compare
our numerical results against the predictions of several approximation schemes, including two mean-field
approaches and a fourth-order strong-coupling expansion, where we show that the latter method in particular is
successful in producing an accurate picture of the phase diagram. Finally, we examine the extent to which
several approximation schemes, such as the random phase approximation and the strong-coupling expansion,
give an accurate description of the momentum distribution of the bosons inside the insulating phases.
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I. INTRODUCTION

One of the most remarkable achievements in the field of
ultracold Bose gases in recent years has been the observation
of a superfluid-to-Mott-insulator transition in optical
lattices.1 By playing with the intensity of the different laser
beams involved in the setup, experimentalists have been able
to study this transition in effective one-,2 two-,3 and
three-dimensional1 geometries. This extraordinary accom-
plishment was achieved with gases of bosonic atoms con-
fined in optical and magnetic traps. Using the strength of the
optical lattice as a control parameter, these gases were re-
versibly tuned from a Bose-Einstein condensate to a Mott
insulator �a state composed of localized atoms�.4

It is generally accepted that this quantum phase transition
can be studied using the Bose-Hubbard model, where the
transition is found to be from a compressible superfluid
phase to an incompressible Mott-insulating one �SF-MI�.5
Over the years, much theoretical work has been devoted to
determining the phase diagram of the model in various di-
mensions, using many different approaches.5–12 However, a
direct comparison between theoretical results and experi-
mental ones1–3 still remains obscured by issues such as the
spatial inhomogeneity,13–15 finite-temperature effects,16,17

and the limited set of experimental tools available to probe
the nearly isolated ultracold atomic systems.

In a recent paper, Aizenman et al.18 argued that the phases
of the Bose-Hubbard model can be studied equally well by
examining a slightly different variant of it, namely, the Bose-
Hubbard model in the limit of infinite onsite repulsion �i.e.,
the case of hard-core bosons�, in the presence of an alternat-
ing �checkerboard� onsite chemical potential �a superlattice
with period two�. The advantage of studying the latter model
lies in the fact that it exhibits all the salient properties of the
Bose-Hubbard model while also being more amenable to
analytical treatment. Specifically, Aizenman et al. rigorously
proved the existence of SF and MI phases in the half-filled
three-dimensional case �although they did not show that
there is no intermediate phase between the two�. In Ref. 19,

two of us �Hen and Rigol� studied that very same model for
the case of zero chemical potential both in two and three
dimensions, using quantum Monte Carlo simulations and
analytical approximation approaches. We showed that the
SF-MI phase transition is a direct transition and we deter-
mined its critical value.

The hard-core Bose-Hubbard model with a superlattice
has yet another attractive feature that the general Bose-
Hubbard model lacks: it is exactly solvable in one dimen-
sion. This is due to the existence of a mapping of the hard-
core bosons to noninteracting fermions. This in turn enables
the evaluation of correlation functions of interest by exact
means.20–22

In this paper, we study the complete phase diagram of
hard-core bosons in the presence of a superlattice in two and
three dimensions, and with arbitrary chemical potential. We
determine the phase boundaries separating the compressible
SF phase of the model from the various insulating phases.
First we acquire the phase boundaries between the SF phase
and the “trivial” insulating phases �the completely-empty and
completely-filled lattices� analytically. Then we perform
high-precision numerical simulations using the stochastic se-
ries expansion �SSE� algorithm23,24 in order to find the phase
boundary of the transition between the SF and the half-filled
MI. This is done by calculating the free energy �, the den-
sity of bosons in the zero-momentum mode �0, and the su-
perfluid density �s. The latter two quantities drop to zero
upon entering the insulating regime from the SF phase.

Once the complete phase diagram is obtained, we proceed
to examine the model analytically by employing two mean-
field-type approximations and a strong-coupling perturbation
scheme �up to fourth order in the hopping parameter� in or-
der to determine the extent to which analytical methods al-
low a reliable description of the system and its various physi-
cal properties, specifically in the context of the phase
boundaries separating the compressible SF regime from the
incompressible insulating regions.

The paper is organized as follows. In Sec. II we review
the model at hand and present a qualitative description of its
expected phase diagram. In Sec. III, we compute the phase

PHYSICAL REVIEW B 81, 064503 �2010�

1098-0121/2010/81�6�/064503�10� ©2010 The American Physical Society064503-1

http://dx.doi.org/10.1103/PhysRevB.81.064503


boundaries between the SF phase and the empty and filled
lattices analytically. In Sec. IV, we obtain the remaining
boundary between the SF and the half-filled MI phase. This
phase boundary is computed numerically, using the SSE al-
gorithm. Section V is devoted to studying the phase diagram
as it is given by two mean-field approaches and in Sec. VI
we employ a strong-coupling expansion �SCE� method.
These approximation methods are then compared against the
previously obtained numerically exact results. In Sec. VII,
we study the momentum distribution of the bosons, in order
to allow for a comparison with future experimental data. Fi-
nally, in Sec. VIII, we conclude with a discussion and sum-
mary of our results.

II. MODEL

The Hamiltonian for hard-core bosons in a period-two
hypercubic superlattice in d dimensions, with N=Ld sites and
periodic boundary conditions, can be written as

Ĥ = − t�
�ij�

�âi
†âj + âj

†âi� − A�
i

�− 1���i�n̂i − ��
i

n̂i. �1�

Here, �ij� denotes nearest neighbors, âi �âi
†� destroys

�creates� a hard-core boson on site i, n̂i= âi
†âi is the local

density operator, � is the global chemical potential, and
A�−1���i� is a checkerboard local potential with ��i�=0 on
the even sublattice and 1 on the odd sublattice. The hopping
parameter t �which we shall fix at t=1� sets the energy scale
and without loss of generality we choose A�0. The hard-
core boson creation and annihilation operators satisfy the
constraints âi

†2= âi
2=0 and �âi , âi

†�=1, which prohibit double
or higher occupancy of lattice sites, as dictated by the
U→� limit of the Bose-Hubbard model. For any two differ-
ent sites i� j, the creation and annihilation operators obey
the usual bosonic relations �âi , âj	= �âi

† , âj
†	= �âi , âj

†	=0.
To understand the zero-temperature phase diagram of

hard-core bosons in a superlattice potential, let us first ana-
lyze the atomic �t=0� limit. In this limit, there is no kinetic
�hopping� term, and the boson number operators n̂i commute
with the Hamiltonian, so every lattice site is occupied by a
fixed number of bosons. The average boson occupancy is
determined so as to minimize the ground-state �free� energy.
In particular, for A=0, the model is translationally invariant,
and the ground-state boson occupancy is the same for each of
the lattice sites: for ��0 the minimal energy configuration
is simply the particle vacuum �VP�, i.e., the completely-
empty lattice, and for ��0 the minimal energy configura-
tion is simply the hole vacuum �VH�, i.e., the completely-
filled lattice. The ground-state energy of these phases is
degenerate at �=0. When A�0, the ground state has an
additional half-filled insulating phase characterized by crys-
talline order in the form of staggered boson densities, i.e.,
�n̂i�=1 for the even �or odd, depending on the sign of � /A�
sublattice and �n̂i�=0 for the odd �or even� one. We call this
alternating density pattern the MI phase although it is some-
times referred to as a charge-density wave.20 The MI phase
resides in the region 
� /A
�1, sandwiched between the par-
ticle vacuum and the hole vacuum.

Having discussed the t=0 limit, we are now ready to ana-
lyze the competition between the kinetic- and the potential-

energy terms of the Hamiltonian when t�0. In one dimen-
sion, the phase diagram of the model is already known. As
noted in the Introduction, the model in this case has an ana-
lytic solution.20,22 This is due to the Jordan-Wigner transfor-
mation which enables the mapping of the hard-core boson
Hamiltonian to that of noninteracting spinless fermions. The
dispersion relation in this case is given by

	�k� = − � 
 �4t2 cos2�ka� + A2, �2�

where a is the lattice constant. The phase diagram consists of
three insulating incompressible regions �these are extensions
of the t=0 ones�, as shown in Fig. 1�a�. Two are the trivial
insulators: the VP phase which is obtained for large and
negative values of �, and the VH phase which is obtained for
large and positive values of �. These two phases are also
present in the absence of the alternating potential and are
particle-hole “mirror images” of each other. They are
separated from the SF phase along the curves
� /A= 
�1+ �2t /A�2 �see Fig. 1�a�	. As evident from the ex-
pression for the dispersion relations given above, the super-
lattice �i.e., the onsite checkerboard potential� creates a gap
of �=2A in the energy spectrum, leading to a MI phase at
half filling. This is the “slab” enclosed by � /A=1 from
above and � /A=−1 from below, in the center of the figure.

In dimensions higher than one �Fig. 1�b�	, the expected
phase diagram of the hard-core Bose-Hubbard model is
qualitatively similar to the one-dimensional case with one
notable exception. Here, the MI region does not extend to
infinity, but instead is a finite lobe, connecting the two SF
regimes together.

The phase diagram of the hard-core Bose-Hubbard model
has one additional property resulting from it being invariant
under the transformation âi→ âi+r̂

† �where r̂ denotes a shift of
one lattice step in any of the possible directions�. This sym-

FIG. 1. Phase diagram of the hard-core Bose-Hubbard model in
the presence of a period-two superlattice, Eq. �1�. In one dimension
�left panel�, the phase diagram contains three incompressible insu-
lating phases, indicated by VH—the hole vacuum, i.e., a
completely-filled lattice, VP—the particle vacuum, i.e., the
completely-empty lattice, and MI—the Mott insulator, in which
case the average density is 1/2 and the local densities on the even
and odd sublattices are different. Outside of these insulating re-
gions, the system is SF. In higher dimensions �right panel�, the
phase diagram is similar, with one exception: while in one dimen-
sion the MI phase extends to infinity, in higher dimensions the MI
phase takes the form of a Mott lobe.
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metry operation, which can be immediately read off from the
Hamiltonian, corresponds to a particle-hole exchange com-
bined with swapping the odd and even sublattices. It leads to
a �→−� symmetry in the phase diagram. We shall make use
of this fact when we obtain the phase diagram in later sec-
tions. The special case of �=0 has been studied in Ref. 19
both in two and three dimensions.

Before moving on, we recall that the model at hand can
also be viewed as the XY model of a spin-1/2 system.25,26

This is due to the mapping between bosonic operators and
SU�2� generators

âi
† ↔ Ŝi

+, âi ↔ Ŝi
−, âi

†âi ↔ Ŝi
z + 1/2. �3�

With this mapping, the hard-core bosons Hamiltonian, Eq.
�1�, becomes that of the XY antiferromagnet with an alternat-
ing magnetic field applied along the ẑ direction

Ĥ = − t�
�ij�

�Ŝi
+Ŝj

− + Ŝj
+Ŝi

−� − �
i

�� + A�− 1���i�	�Ŝi
z +

1

2
 .

�4�

This alternative representation will become handy in the next
sections.

III. VACUUM OF PARTICLES AND HOLES PHASE
BOUNDARIES

As it turns out, the phase boundary separating the SF
phase from the insulating VH phase �henceforth, the SF-VH
boundary� can be easily obtained analytically for any given
dimension. To see this, we will use the fact that our Hamil-
tonian commutes with the total-number-of-bosons operator

N̂=�in̂i. In spin language, this simply means that for any
given set of parameters �, A, and t, the ground-state wave
function will be a linear combination of product states each
having the same number of spin-downs. In the VH phase,
this number is zero, as the wave function is simply


VH� = 
↑↑↑ ¯ ↑↑↑� �5�

with energy 	vh=−�N. In the infinitesimally thin layer out-
side the VH phase, the state of the system �which we shall
refer to as the VH “defect” state� is characterized by exactly
one spin-down. That is, the wave function has the form


VHdef� = �
i

ciŜi
−
VH� . �6�

The symmetry of our model further tells us that all the coef-
ficients ci whose index “i” corresponds to a site on the even
�odd� sublattice are all the same, namely,

ci =
ce.s. + co.s.

2
+ �− 1���i�ce.s. − co.s.

2
, �7�

where normalization requires N /2�
ce.s.
2+ 
co.s.
2�=1 and e.s.
�o.s.� stands for the even �odd� sublattice. In order to deter-
mine the exact value of the weights ce.s. and co.s., we first act
with the Hamiltonian on this state. This eigenvalue problem
then reduces to the following coupled equations:

− 2dtco.s. + ���1 − N� + A	ce.s. = 	ce.s. , �8a�

− 2dtce.s. + ���1 − N� − A	co.s. = 	co.s. , �8b�

where 	 is the energy of the state. Solving for 	, the solution
with minimal energy turns out to be

	def = − �N + � − �A2 + �2dt�2. �9�

The SF-VH boundary is the curve along which the VH state,
Eq. �5�, is no longer energetically favorable. This happens
when its energy becomes equal to the energy of the defect
state, Eq. �6�. Matching the two, we obtain the SF-VH phase
boundary

�

A
= �1 + x2, �10�

where x=2dt /A.
A few remarks are now in order. As already noted in the

previous section, the phase diagram of the hard-core
Bose-Hubbard model is symmetric under the transformation
�→−�. This tells us that the SF-VP phase boundary �the
lowest branch in Fig. 1�b�	, is given by � /A=−�1+x2. This
result can also be obtained by repeating the above exercise
with the substitution 
↑ �↔ 
↓ �. We also note that Eq. �10�
agrees with the corresponding expression of the one-
dimensional case obtained formerly �see Sec. III�.

Another, simpler argument leading to the same solution
stems from the fact that the boundary between the SF and the
VP �VH� phase is determined by the addition of a single
particle �hole� to the completely-empty �-filled� lattice. It can
then be argued that whether one is dealing with hard-core
bosons or noninteracting spinless fermions, makes no differ-
ence in this case, as the particle statistics plays no role. This
further means that one needs only to diagonalize the single-
particle Hamiltonian and find the energy difference between
the completely-empty �-filled� lattice and the state with one
particle �hole�. These will provide the chemical potential at
the boundary between the SF and the VP �VH� phase. The
single-particle spectrum in a d-dimensional superlattice with
period two has the form

	�k� = − � 
 �4d2t2 cos2�ka� + A2 �11�

from which Eq. �10� follows trivially.

IV. NUMERICAL RESULTS

Unlike the SF-VH and SF-VP phase boundaries, the
SF-MI boundary, cannot be determined with the tools intro-
duced in the previous section. One reason for that is that the
exact many-body wave function of the MI state is not
known. Therefore, in this section we explore the SF-MI
phase boundary numerically by performing simulations
based on the SSE algorithm.23,24 Our main objective here is
to find the critical points of the SF-insulator transitions in the
�-A parameter space �without loss of generality we fix the
hopping parameter at t=1 and consider only ��0 and
A�0�. Critical points on the SF-MI boundary were typically
obtained by first fixing the value of the parameter A, and then
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performing the simulations for a range of values of � and
different system sizes. This procedure was then repeated for
different values of A. In some cases, mainly near the tip of
the Mott lobe, we repeated the above procedure by fixing the
value of � and performing simulations for a range of A val-
ues and different system sizes. This was done mainly to fur-
ther verify the accuracy of the results, as the tip of the lobe is
a multicritical point and therefore requires more care.

Repeating the simulations with different system sizes, en-
ables us to extrapolate the thermodynamic limit by correct-
ing finite-size effects using scaling arguments in the vicinity
of the phase transition: around the critical point, most physi-
cal quantities �which we denote here by X� scale according to
the general rule

XL�/ = F�
� − �c
L1/� , �12�

where F is a universal scaling function, �−�c is the shifted
control parameter �� being the control parameter and �c its
critical value�,  is the correlation length critical exponent,
and � is the critical exponent belonging to the observable X.
The values of these exponents are determined by the univer-
sality class the transition belongs to. In a previous work,19

we studied the SF-MI transition at fixed �half-filled� density.
This type of transition belongs to the �d+1� XY universality
class, similarly to the SF–MI transition of the Bose-Hubbard
model at fixed integer density.5 Here, we compute the phase
boundary between the SF and the �half-filled� MI phase
while changing the density, so the transition belongs to the
mean-field universality class for which the correlation length
and dynamical critical exponents are =1 /2 and z=2 �again,

exactly as the corresponding transition in the Bose-Hubbard
model�.5

Equation �12� above will help us find the critical point, as
it tells us that �a� the quantity XL�/ should be independent of
the size of the system at the phase transition and �b� when
plotting XL�/ against 
�−�c
L1/ the resulting curve should
be independent of the system size as well. The quantity we
shall be using to that end is the superfluid density, which has
the critical exponent �=�d+z−2� �see Ref. 5 for details�
where d is the dimension.

We note here that since we are interested in the zero-
temperature properties of the system, simulations are per-
formed with high inverse temperature �=1 /T �in our units,
kB=1�, where in most cases we will find it sufficient to have
��2L in order to obtain virtually zero-temperature results.
�The effects of increasing � beyond this value are indiscern-
ible.�

As already discussed, in one dimension, our model has an
analytic solution.20 This enabled us to compare our numeri-
cal method against exact analytic results, as a check on our
computational approach. No discrepancies between the ana-
lytical solution and the numerical one were found �see also
Ref. 19�.

In dimensions higher than one, no analytic solution to the
model exists, so accurate results are obtainable only numeri-
cally. In the two-dimensional case, we have applied the SSE
algorithm to systems of sizes ranging from 16�16 to 48
�48, with inverse temperature �=64. Figure 2 is an ex-
ample of how scaling of the superfluid density data for the
various system sizes is performed in order to find the critical
point corresponding to A=1.05. Here, the scaled superfluid
density is plotted against � for the different system sizes �the
statistical errors of the quantum Monte Carlo simulations are
on the order of magnitude of the symbol sizes�. All curves
intersect at �c�0.178, signifying the phase transition for
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FIG. 2. �Color online� Scaled superfluid density as a function of
the chemical potential � for the various system sizes in the
two-dimensional case �here, A=1.05�. All the curves intersect at
��0.178 indicating the value of the critical point. In the inset, the
control parameter �the horizontal axis� is scaled as well, leading to
the collapse of all data points into a single curve.

FIG. 3. �Color online� Phase diagram of the model in two di-
mensions. The full circles are the analytical �VH boundary� and
numerical �MI boundary� results. The solid line corresponds to the
SCE fit, whereas the dot-dashed and dashed lines are the mean-field
�with and without spin-wave corrections� and cluster mean-field
predictions, respectively. As the figure shows, the SF-VH boundary
is predicted correctly by the mean-field approximation schemes. As
for the SF-MI boundary, the predictions of the SCE fit provide the
most accurate results.
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A=1.05. The inset shows the scaled superfluid density as a
function of the scaled control parameter, in which case all
curves should be, and in fact are, on top of each other. The
resulting SF-MI phase boundary of our model in two dimen-
sions is marked by the full circles in Fig. 3. As noted earlier,
the lower half of the phase diagram Fig. 1 �the ��0 half� is
but a mirror image of the portion shown in Fig. 3 and thus is

not presented there. The tip of the Mott lobe was found to be
at xc�2.02.19

In three dimensions, we have performed simulations with
system sizes ranging from 6�6�6 to 16�16�16 and an
inverse temperature of �=40. Figure 4 is an example of how
scaling is carried out in three dimensions: the scaled super-
fluid density is plotted as a function of � for the different
system sizes and A=2.28. The inset depicts the scaled super-
fluid density as a function of the scaled control parameter,
exhibiting the collapse of all data points into a single curve,
as in two dimensions. The resulting phase boundary in three
dimensions is shown in Fig. 5 �full circles�. The tip of the
Mott lobe was found to be at xc�1.44.19

V. MEAN-FIELD APPROACHES

Having obtained the exact boundaries of the phase dia-
gram of the model, we now proceed to study several approxi-
mation schemes and examine the extent to which they pro-
vide an accurate description of the phase diagram of the
model. We start this investigation with the Gutzwiller mean-
field approach.

A. Gutzwiller mean-field

Along the lines of Ref. 19, we start our mean-field calcu-
lation with the following product state as our ansatz:


0�MF = �
j

� �sin
� j

2

↓� + cos

� j

2
ei�j
↑� . �13�

The angles �� j ,� j� here, specify the orientation of the jth
spin. Naturally, we expect the wave functions of each of the
odd �even� sublattice sites to be identical. This is due to the
checkerboard symmetry of the model.

As we are using the grand-canonical scheme, the orienta-
tions of the spins will be determined by minimizing the
grand-canonical potential �per site�

�MF = MF�0
Ĥ
0�MF

= −
t

2N
�
�ij�

sin �i sin � j cos��i − � j�

−
1

2N
�

i

�� + A�− 1���i�	�1 + cos �i� �14�

with respect to these angles. For the azimuthal angles, this
simply implies a constant �yet arbitrary� value � j =�, while
for the polar angles, the minimizers are

cos �1 = Min�1,Max�− 1,�1�1 + �2
2

1 + �1
2�� , �15a�

cos �2 = Min�1,Max�− 1,�2�1 + �1
2

1 + �2
2�� , �15b�

where �1,2= ��
A� / �2dt�. We note that while in Ref. 19 the
focus was on the special �=0 case, here we place no limi-
tations on �.
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FIG. 4. �Color online� Scaled superfluid density as a function of
the chemical potential � for the various system sizes in the three-
dimensional case �here, A=2.28�. All the curves intersect at
��0.725 indicating the value of the critical point. In the inset, the
control parameter �the horizontal axis� is scaled as well, leading to
the collapse of all data points into a single curve.

FIG. 5. �Color online� Phase diagram of the model in three
dimensions. The full circles are the analytical �VH boundary� and
numerical �MI boundary� results. The solid line corresponds to the
SCE fit, whereas the dot-dashed and dashed lines are the mean-field
�with and without spin-wave corrections� and cluster mean-field
predictions, respectively. As the figure shows, the SF-VH boundary
is predicted correctly by the mean-field approximation schemes. As
for the SF-MI boundary, the predictions of the SCE fit provide the
most accurate results.
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At this point we can calculate the following quantities.
First, the average density of particles is:

�MF =
1

N
�

i
MF�0
âi

†âi
0�MF

=
1

2
+

1

2N
�

i

cos �i

=
1

2
+

1

4
�cos �1 + cos �2� . �16�

Next, the free energy becomes

�MF = MF�0
Ĥ
0�MF

= −
dt

2
sin �1 sin �2 −

�

2
−

1

4
�� + A�cos �1

−
1

4
�� − A�cos �2 �17�

and the density of bosons in the zero-momentum mode �0 is
calculated as

�0,MF =
1

N MF�0
âk=0
† âk=0
0�MF

=
1

4N2�
i,j

sin �i sin � j

=
1

16
�sin �1 + sin �2�2. �18�

The superfluid density too is obtained in a straightforward
manner. In the mean-field approximation it has the simple
form �s=−�2d�−1�� /�t.19

The phase boundaries are simply the curves along which
the superfluid density and the zero-momentum fraction drop
to zero. These turn out to be

�

A
= �1 
 x2, �19�

where the “+” branch belongs to the SF-VH transition and
the “−” branch belongs to the SF-MI transition �again, x
=2dt /A�. The phase diagram of the model as predicted by
the Gutzwiller mean-field approach is sketched in Fig. 6,
which shows the average density of bosons as a function of x
and � /A.

An alternative way of deriving the mean-field phase
boundaries is through the decoupling approximation.5,27 In
this approach, one approximates the hopping term as

âi
†âj � �âi

†�âj + âi
†�âj� − �âi

†��âj� �20�

and introduces the condensate order parameter
�i=�n̂i= �âi

†�= �âi� �analogous to the Bogoliubov approach�.
Since the condensate order parameter is the same for all lat-
tice sites belonging to the same sublattice, i.e.,

�i =
�e.s. + �o.s.

2
+ �− 1���i��e.s. − �o.s.

2
�21�

for some real unknown parameters �e.s. and �o.s. �due to the
checkerboard symmetry of the model�, it is sufficient to
solve only for the effective two-site Hamiltonian

ĤMF = − 2dt�e.s.�âj
† + âj� − 2dt�o.s.�âi

† + âi�

+ 4dt�e.s.�o.s. − An̂i + An̂j − ��n̂i + n̂j� , �22�

where i�e.s. and j�o.s. Performing a second-order pertur-
bation theory in the first two terms of this effective Hamil-
tonian around the VH and MI phases produces the ground-
state energies as a function of �e.s. and �o.s.. Notice that
higher orders are not needed for our purposes since the
second-order theory is sufficient to derive the energy func-
tional of the system up to second order in the order param-
eters �o.s. and �e.s.. Following the usual Landau procedure
for second-order phase transitions, minimizing the ground-
state energies as a function of the superfluid order param-
eters, we eventually arrive at Eq. �19�.

The dash-dotted lines in Figs. 3 and 5 show the phase
diagram as predicted by the Gutzwiller mean-field approach,
compared against the numerical results. Interestingly, the
mean-field ansatz yields the correct solution for the SF-VH
transition �upper branch�. On the other hand, for the SF-MI
boundary, mean-field results differ considerably from the nu-
merical data: while away from the tip of the Mott lobe the
method is very accurate, as one approaches the tip itself,
errors climb up to their maximal values of �100% in two
dimensions and �50% in three dimensions at the tip of the
MI lobe. The very large errors here reflect the fact that the
mean-field approach is simply not fit to describe the phase
transition in this region.

FIG. 6. �Color online� Average density of bosons as a function
of x=2dt /A and � /A in the mean-field approximation. The three
insulating phases VP �empty lattice, zero density�, MI �half-filled
lattice�, and VH �completely-filled lattice� are seen very clearly in
the figure. Outside of these insulating regions is the SF phase.
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Before moving on, we remark here that addition of spin-
wave corrections to the mean-field solution does not modify
the mean-field critical points of the model19 so the phase
boundary is not altered by spin-wave corrections. While deep
in the SF phase spin-wave corrections yield major improve-
ments over the mean-field results for many of our observ-
ables of interest, in terms of phase boundaries the spin-wave
corrections do not contribute. As one approaches the phase
transition itself, the spin-wave corrections lose their accu-
racy, eventually leaving the phase boundaries at their mean-
field values.19

B. Cluster mean field

Aiming to improve the results obtained in the previous
section, we now describe a “cluster” mean-field approach,
which makes use of the checkerboard symmetry of the
model. This approximation scheme was introduced in Ref.
19 where it was applied to the special case of �=0. Within
this approach, one starts with a variational ansatz which, as
before, is a product state. However, this time one does not
choose a product of single-site wave functions. The new an-
satz is a product of wave functions each describing the state
of a “block” of 2d sites, such that with this block as the basic
cell, the model turns homogeneous. In two dimensions, for
example, a block is a 2�2 square cell, and the system is
described by the general wave function


0�CMF = �
blocks

�

� �
i,j,k,l��↓,↑�

cijkl
ijkl� , �23�

where the generalization to three dimensions, in which case
the basic block is a 2�2�2 cubic cell, is straightforward
�note that the coefficients for each of the blocks will be the
same due to the symmetry of the wave function�.19 As be-

fore, we minimize the free energy �CMF= CMF�0
Ĥ
0�CMF
with respect to the coefficients cijkl of the wave function �this
time we do so numerically�. Obtaining the various observ-
ables in terms of the wave function given in Eq. �23� is
straightforward and was performed in much the same way as
the usual mean-field approach discussed in Sec. V A.

The phase boundaries, as predicted by the cluster mean-
field approximation, are given by the dashed lines in Figs. 3
and 5 for two and three dimensions, respectively. As the
figures indicate, the SF-VH boundary is predicted correctly.
This is no surprise as the Gutzwiller mean-field, over which
the current method is an improvement, is already exact for
that boundary. As for the SF-MI boundary, the cluster mean-
field method is far better than the Gutzwiller mean-field
method. As in the previous mean-field case, the results are
more accurate away from the tip of the Mott lobe but reach
�60% error in two dimensions �24% error in three dimen-
sions, as the tip is approached.

Having shown that the mean-field-type theories presented
here are not very accurate in describing the SF-MI phase
boundary, in particular, close to the tip of the lobe, we turn to
develop a strong-coupling perturbation theory in the hopping
t. This approach, combined with a scaling analysis, will al-
low us to predict the critical point and the shape of the insu-
lating lobe in a more accurate manner.

VI. SCE

SCE techniques were previously used to discuss the phase
diagram of the Bose-Hubbard model,8,9,28 and of the ex-
tended Bose-Hubbard model,29 and its results showed an ex-
cellent agreement with quantum Monte Carlo simulations11,12

in the former case. Motivated by the success of this tech-
nique with Bose-Hubbard-type models, here we generalize
this technique to the hard-core Bose-Hubbard model on a
superlattice.

To determine the phase boundary separating the incom-
pressible MI phase from the compressible SF phase within
the SCE method, one needs the energy of the MI phase and
its defect states—those states which have one flipped spin
�equivalently, one excited particle� about the ground-
state—as a function of the parameter t. At the point where
the energy of the incompressible state becomes equal to its
defect state, the system becomes compressible, assuming that
the compressibility approaches zero continuously at the
phase boundary. Note that these arguments are very similar
to those presented in Sec. III where exact results were ob-
tained for the SF-vacuum insulators boundaries. Here how-
ever, the state of the system inside the MI phase is not known
except for the special case t=0, where


MI�0�� = 
↑↓↑↓ ¯ ↑↓↑↓� , �24�

where all the spin-ups �spin-downs� belong to the even �odd�
sublattice.

The energy of the MI phase is calculated via a many-body
version of the nondegenerate Rayleigh-Schrödinger perturba-
tion theory up to fourth order in t. We note that all odd-order
terms in t vanish for the d-dimensional hypercubic lattices
considered in this manuscript. This is because this state can-
not be connected to itself by only one hopping but rather
requires two hoppings to be connected.

Calculation of the wave functions and energies for the
defect states is more involved as it requires the use of the
many-body version of the degenerate Rayleigh-Schrödinger
perturbation theory. The reason for that lies in the fact that
when exactly one extra particle is added to the MI phase, it
could go to any of the N /2 lattice sites that belong to the odd
sublattice since all of those states share the same energy
when t=0 �recall that N is the number of lattice sites�. There-
fore, the initial degeneracy of the MI defect state is of order
N /2. This degeneracy is lifted at second order in t, since all
of the defect states occupy one of the sublattices, and they
cannot be connected by one hopping, but rather require two
hoppings to be connected. The wave function �to zeroth or-
der in t� of the particle-defect state turns out to be


MIdef
�0�� = �

i�o.s.
f iŜi

+
MI�0�� , �25�

where f i is the eigenvector of the matrix Tii�=� j�e.s.tijtji�
with the highest eigenvalue, such that �i��o.s.Tii�f i�=4d2t2f i.
Here, tij = t for �ij� and zero otherwise. The normalization
condition requires that �i�o.s.
f i
2=1. The eigenvector with
the highest eigenvalue corresponds to the lowest energy
state, i.e., to the ground state. We calculate the energy of the

MIdef

�0�� phase via degenerate perturbation theory up to fourth
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order in t. Here too all odd-order terms in t vanish.
A lengthy but straightforward calculation leads to the fol-

lowing expression for the SF-MI boundary �for further de-
tails regarding the calculation, we refer the reader to a simi-
lar calculation given in Ref. 29�

�

A
= 1 −

d − 1

2d
x2 −

�d − 1��d − 3�
8d2 x4 + O�x6� , �26�

where x=2dt /A. This expression is exact for all
d-dimensional hypercubic lattices up to the given order. In
one dimension, it agrees with the analytical solution20 of the
model given by � /A=1 �see Sec. II�. In the d→� limit,
where the exact result is given by the mean-field expression,
i.e., � /A=�1−x2, Eq. �26� is the correct power-series expan-
sion about x=0.

In the two- and three-dimensional cases, fourth-order SCE
is not very accurate near the tip of the MI lobe, as the vari-
able x is not very small there. Therefore, an extrapolation
technique is desirable in order to determine the phase bound-
ary more accurately. Such an extrapolation is possible for the
MI phase since it is already known for d�1 that the critical
point at the tip of the MI lobe has the scaling behavior of a
�d+1� XY model. Therefore, we propose the following an-
satz for the MI lobe which includes the known power-law
critical behavior of the tip of the lobe:

�

A
= �0�1 + �1x + �2x2 + �3x3 + �4x4� � �xc − x�z,

�27�

where xc=2dt /Ac is the critical point which determines the
location of the MI lobe tip and z is the critical exponent for
the �d+1� XY model which determines the shape of the MI
lobe near xc. The parameters �i are determined by matching
Eq. �26� with Eq. �27�, after the latter is expanded out to
fourth order in t. This procedure leads to

�0 =
1

xc
z , �28a�

�1 =
z

xc
, �28b�

�2 =
z�z + 1�

2xc
2 + e2, �28c�

�3 =
z�z + 1��z + 2�

6xc
3 +

z

xc
e2, �28d�

�4 =
z�z + 1��z + 2��z + 3�

24xc
4 +

z�z + 1�
2xc

2 e2 + e4,

�28e�

where e2=−�d−1� / �2d� and e4=−�d−1��d−3� / �8d2� are the
coefficients of the second- and fourth-order terms in our
SCE.

In our extrapolations, we set z�0.672 for d=2 and
z=1 /2 for d�2. This leaves only xc to be fixed; something

which is accomplished by a straightforward �2 curve fitting
to the numerical data obtained in Sec. IV. The results are
shown by the solid lines in Figs. 3 and 5 for two and three
dimensions, respectively. As one can immediately see, the
SCE results are very accurate and provide an analytic expres-
sion for the phase boundaries.

Alternatively, we can estimate xc using the above ap-
proach without fitting it to the numerical data. We do so by
finding the value of xc for which the fifth-order term in x of
Eq. �27� vanishes. This gives xc�1.53 for d=3 ��6.7% er-
ror� and xc�1.076 for d→� ��7.6% error�.

Before moving on to the next section, we note here that a
similar application of the SCE for the SF-VH phase bound-
ary, where


VHdef
�0�� = �

i�o.s.
f iŜi

−
VH� �29�

is the wave function �to zeroth order in t� of the hole-defect
state, leads to

�

A
= 1 +

1

2
x2 −

1

8
x4 + O�x6� �30�

in agreement with the exact result derived in Sec. III, i.e.,
� /A=�1+x2, up to the given order. In addition, we perform
a SCE in A, and find that the large x behavior of the phase
boundary is given by � /A=x+O�1 /x�, which is also in
agreement with the exact result.

VII. MOMENTUM DISTRIBUTION

Having discussed the phase diagram of the hard-core
Bose-Hubbard model with a superlattice in the previous sec-
tions, next we analyze the momentum distribution n�k� of
these bosons. This quantity can be directly probed in experi-
ments with ultracold atomic gases via an absorption imaging
during a short time-of-flight.3,30 Since it is trivial to show
that nVH�k�=1 in the VH phase, we shall concentrate only on
the momentum distribution of the bosons in the MI phase,
nMI�k�, where we will compare our numerical quantum
Monte Carlo results with those of two analytical approaches:
the random-phase approximation �RPA� and the SCE method
introduced in the previous section.

The RPA is a well-defined linear operation in which ther-
mal averages of products of operators are replaced by the
product of their thermal averages.31 Since the fluctuations are
not fully taken into account in this method, it becomes exact
only for infinite-dimensional bosonic systems, recovering the
mean-field theory. This method has been recently applied to
the onsite,32,33 and extended34 Bose-Hubbard models, and its
results showed good qualitative agreement with the experi-
ments in the former case.3,30 Here we apply this method to
our model �for further details regarding the calculation, we
refer the reader to a similar calculation given in Ref. 34�, and
obtain

nMI-RPA�	k� =
1

2
�A − 	k

A + 	k
, �31�

where 	k=−2t�i=1
d cos�kia� is the energy dispersion of nonin-

teracting particles. Since the RPA phase boundary is exactly
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the same as the mean-field one and it gives a critical value
for x=2dt /A that is much smaller than the true critical value
in finite-dimensions, we compare our results with a rescaled
x value such that

nMI-RPA
scaled �	k� =

1

2
�Axc − 	k

Axc + 	k
, �32�

where xc=2dt /Ac is the true critical point which determines
the location of the MI lobe tip. We call this the scaled RPA
momentum distribution following Ref. 28.

To extend the RPA result to finite dimensions, we also
calculate nMI�	k� as a power series expansion in the hopping
t via the strong-coupling perturbation theory. To second or-
der in t, we obtain �for further details regarding the calcula-
tion, we again refer the reader to a similar calculation given
in Ref. 34�

nMI-SCE�	k� =
1

2
−

	k

2A
+

	k
2 − 2dt2

4A2 + O�t3� , �33�

which is exact up to the given order for any dimension d. In
the d→� limit �while dt is kept fixed�, we checked that Eq.
�33� agrees with the RPA solution �which is exact in that
limit� given in Eq. �31�, when the latter is expanded out to
second order in t. This provides an independent check of the
algebra.

The second-order SCE is not very accurate near the tip of
the MI lobe, as t /A is not small there. To extend its region of
validity, we therefore propose the following ansatz:

nMI�	k� =
1

2
�A − 	k + �4� − 2�dt2/A

A + 	k + 4�dt2/A
�34�

for any dimension d, where �=d�xc−1� /xc
2 depends on d.

This expression reduces to Eq. �31� in the d→� limit and it
has the correct power-series expansion about x=0 up to sec-
ond order in t, i.e., Eq. �33�. We call this the scaled SCE
momentum distribution.

In Fig. 7, we show several comparisons �two in two di-
mensions and two in three dimensions� between the momen-
tum distribution function obtained with the quantum Monte
Carlo and the three approximations obtained above, namely,
the scaled RPA, the SCE, and the scaled SCE. As the figures
indicate, the scaled SCE is a far better fit than the other two
methods, and more so for larger values of A, that is, deeper
inside the MI phase where the SCE becomes more and more
accurate.

VIII. CONCLUSIONS

We have obtained the complete phase diagram of the
hard-core Bose-Hubbard model with a period-two superlat-
tice in two and three dimensions. First we have calculated
the boundaries between the superfluid phase and the trivial
insulators �the completely-empty and completely-filled lat-
tices� analytically. Then, using quantum Monte Carlo simu-
lations followed by a finite-size scaling, we have determined
the phase boundary between the superfluid phase and the
�half-filled� Mott insulator. We have also compared our nu-

merical results against three approximation schemes: the
usual Gutzwiller mean-field approach, a cluster mean-field
approach, and the SCE method.

For the transition between the superfluid phase and the
trivial completely-empty and completely-filled lattice insula-
tors, we have found that the mean-field approaches yield the
exact results in any dimension. As for the superfluid-Mott
insulator boundary, the Gutzwiller approach was shown to
work very poorly �up to �100% error in two dimensions and
�50% error in three dimensions�. This is a clear indication
of the fact that this mean-field approach is not suitable for
describing the superfluid-Mott insulator transition in the vi-
cinity of the tip of the lobe. A cluster mean-field approxima-
tion scheme, which is based on the underlying checkerboard
symmetry of the problem, was proven to be a big improve-
ment over the previous method �reducing the error to one
half of the one generated by the usual Gutzwiller ansatz�,
albeit still far from being accurate as one approaches the tip
of the Mott lobe. The fourth-order SCE turned out to be the
best method among the three in describing the superfluid-
Mott insulator phase boundary, as the one-parametric fit of
the SCE yielded very accurate results, also near the tip of the
Mott lobe where the other methods failed. It also provided an
analytic expression for that boundary, which could be used as
a guide in future experimental realizations of this model.

Finally we have examined the extent to which several
approximation schemes, such as the random phase approxi-
mation and the strong-coupling expansion, give an accurate
description of the momentum distribution of the bosons in-
side the insulating phases. We have shown that a scaled SCE
provides an accurate analytic expression for the momentum
distribution of the bosons inside the Mott-insulating phase
both in two and three dimensions, which could again be used
as a guide in future experimental realizations of this model.

FIG. 7. �Color online� Momentum-distribution function n�	k�
for two 48�48 systems: �a� A=2.42 �x�1.653� and �c� A=4.22
�x�0.948� and two 14�14�14 systems: �b� A=4.8 �x=1.25� and
�d� A=6 �x=1�. The full circles are the numerical SSE results. The
scaled RPA is the dot-dashed line, whereas the dashed and solid
lines are the SCE and scaled SCE, respectively. The figures show
that the scaled SCE results are much better than any of the other
two approximation methods, and that the scaled SCE results fit
better, as A becomes larger �t=1 in all four systems�—suggesting
we are deeper inside the MI phase.
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